AN EXTENDIBLE APPROACH FOR ANALYSING
FIXED PRIORITY HARD REAL-TIME TASKS

K. W. Tindellt
Department of Computer Science, University of York, England YO1 5DD

ABSTRACT

As the real-time computing industryovesawayfrom staticcyclic executive-basedcheduling
towards more flexible process-basedcheduling,so it is important for current scheduling
analysistechniquego advanceand to addressanore realistic applicationareas.This paper
extendsthe currentanalysisassociatedvith static priority pre-emptivebasedscheduling;in
particular it derives analysis for taskdth arbitrary deadlineghat may sufferreleasgitter due
to being dispatchedby a tick driven schedulerWe also considerbursty sporadicactivities,
where tasksarrive sporadicallybut then executeperiodically for some boundedtime. The
paperillustrateshow a window-basedanalysistechniquecan be usedto find the worst-case
responsdime of a taskset,and showsthat the techniquecan be easilyextendedo copewith
realistic and complex task characteristics.

1. INTRODUCTION

Onecommonlyproposedwvay of constructinga hardreal-timesystemis to build the systemfrom a numberof sporadic
andperiodictasks,eachassignedstatic priorities, anddispatchedat run-time accordingto the static priority pre-emptive
schedulingalgorithm. The main thrustof researchwith this approacthasbeento derivea priori analysisthatcanbound
the behaviourof the tasksat run-time.Original work by Liu andLayland[11] providesa priori analysisto determinef a
set ofperiodictaskswould be guaranteedo meettheir deadlinesTaskdeadlinesaaretakento be at the endof the periods
of the tasks,and tasksare not permittedto block at run-time. Furthermore,eachtask is assigneda unique priority
monotonicallywith task period, and hencethe namerate monotonicschedulig. The analysisprovidesa schedulability
testby giving a utilisation bound.The Liu and Laylandanalysisis sufficient(an essentiapropertyof any schedulability
test— if thetestpasses setof tasksthenthosetasksmustalwaysmeettheir deadlinesput not necessaryfa measureof
the ‘efficiency’ of the test — if the test is necessary then a rejected taskl 9e¢ unschedulablén the worst-case)Shaet
al [9] extendedhe analysisto providean exacttest(i.e. both sufficientandnecessary)Shaet al [15] deriveda run-time
algorithmto permit tasksto lock and unlock semaphoresiccordingto a protocol, termedthe priority ceiling protocol
With this protocola systemis guaranteedo be free of deadlock (on single processoisystems)and a given task can be
blockedat mostonceby a lower priority task.Shaet al extendedhe rate monotonicanalysisto accountfor the behaviour
of this protocol,addinga blockingfactor to the schedulabilityequationgthe blocking factor accountsfor the worst-case
time a given task can be blocked).

The priority pre-emptivedispatchingalgorithm hasalsobeenanalysedoy Josephand Pandya[5] to find the worst-case
responsdime of a giventask.Analysisis derivedthatfinds the worst-casdime betweena taskbeingreleasedi.e. placed
in a notional priority-ordered run-queue) and the task completing the exeotiiavorst-caseequiredcomputatiortime.
This permits task deadlines to be less than pasiods:the worst-caseesponseime canbe comparedo a staticdeadline.
The optimal priority orderingfor taskswith deadlinedessthan periodshasbeenshownto be the deadlinemonotonic
ordering[10]. Allowing taskdeadlinego belessthantaskperiodsis usefulfor manyreal-timeapplicationsin distributed
systemgleadlinescanbe shortenedo allow time for message passbetweenprocessor$l7]; for control systemsnput
and outputjitter canbe controlled[12]. However,somereal-timeapplicationsare not so stringent,and can accepttask
deadlines greater than task periods: a tapleimittedto re-arrivebeforethe previousinvocationhasfinished(andis then
delayeduntil the previousinvocationterminates).Lehoczky[8] describesqualitative analysiswhich can determinethe
worst-case response time of a given task with such arbitrary deadlines. Lehoczky pointsraititbehe rate monotonic

1The author can be contacted by e-maken@ri nst er . yor k. ac. uk

www.manaraa.com

nor deadline monotonic priority ordering policies are optimal for tasks with arbdresagllinesWe will reproduceherean
algorithm which finds the optimal priority ordering for any task set.

Many static priority pre-emptivedispatchersre implementedusingtick scheduling- a periodic clock interruptrunsthe

scheduler;a budgettimer ensuresthat control is returnedto the schedulerif a task exceedsits permittedworst-case
executiontime. One of the problemswith puretick schedulings that sporadictaskarrivals are polled by the scheduler,
which means that a sporadaskcanarrive (i.e. wantto run) but be delayedbeforebeingreleasedlt is thenpossiblethat

this leadsto so-calledreleasejitter: variability in the releaseof a task (by at mostthe tick period). Periodictaskswhich

havea periodthatis notanintegermultiple of thetick periodcanalsoin generalsuffer a releasgitter. This releasgitter

leadsto the possibility of a task appearingto arrive soonerthan the worst-caseinter-arrival time, and violates the

assumptionsf currentanalysis.Rajkumar[14] extendshe exactrate monotonicanalysisof Lehoczkyet al [9] to permit

tasksto beblockedon an externalevent(releasgitter is a specialcaseof externalblocking)in orderto permitthe priority

ceiling protocolto be extendedo distributedsystemsHowever,theseextensiongesultin a non-exactest;we will derive

exact analysis which accounts for release jitter.

Somereal-time systemshavetasksthat behaveas so-calledsporadically periodic tasks[2]: a taskarrivesat sometime,
executegperiodicallyfor a boundedhumberof periods(calledinner periodg, andthendoesnot re-arrivefor a largertime
(calledthe outerperiod). Examplesof suchtasksareinterrupthandlersfor burstyinterrupts(for example packetarrivals
from a communicationglevice),or certain monitoring tasks.Existing analysisis not exact(and hencepessimistic)for
thesetasks:taskswould be assumedo executecontinuouslyat their inner period rate. We will derive exactanalysisfor
tasks with this behaviour.

This paper will derive analysis for static priority pre-emptive systems that permits tasks ariitrneey deadlinesrelease
jitter, and behaveas sporadically periodic tasks. The derivation of this analysiswill illustrate how using a window
approachto finding worst-case response times for these tasksappropriatevay of obtainingan analysistailoredto the
behaviour of real real-time tasks. This approach is easily extended to deal with other application characteristics.

The paperis structuredasfollows: Section2 will describethe computationainodelassumedhroughoutthis paper,and
define the notationused.Section3 will derive basicanalysisfrom that of Josephand Pandyaand extendit to permit
arbitrary deadlines,using the approachof Lehoczky. Section4 will extendthe analysisto permit releasejitter to be
accountedor. Section5 will further extendthe analysisto be exactfor sporadicallyperiodic tasks.Section6 will also
discussthe implementationof static priority pre-emptivedispatchingusing timer interrupts (i.e. tick scheduling);the
analysiswill be extendedo exactly accountfor the overheadslue to this meansof scheduling.Section7 will give an

algorithmto find the optimal priority orderingfor a taskset.Section8 will summariseghe schedulingtheory developed.
Section 9 will present an example task set and determine the worst-case response times of eachtasippérelixA

gives a table of notationusedin this paper.Appendix B gives detailson how a programimplementingthe analysis
described in this paper can be obtained.

2. COMPUTATIONAL M ODEL AND ASSUMPTIONS

A number of tasks are statically assigned to a single proc&ssskshaveuniquepriorities; the run-timesystemprovides
pre-emptivepriority-baseddispatching.Eachtask may lock and unlock semaphoresccordingto the priority ceiling
protocol [15) (or equivalent[3]); althoughtasksare assignedunique static priorities, they may have their priorities
temporarilyincreaseddue to priority inheritance(as part of the operationof the priority ceiling protocol). Taskscan
arrive at anytime (i.e. wantto run), but can be delayedfor a variablebut boundedamountof time (termedthe release
jitter) before being placedin a notional priority-orderedrun-queue(i.e. releaseq. Tasksare given a worst-caseinter-
arrival time, termedthe period (T): a task cannotre-arrive soonerthan this time. For eacharrival a task may executea
bounded amount of computatidermedthe worst-caseexecutiortime (C). This valueis deemedo containthe overheads
due to context switching. The cost of pre-emption, within the model, is thus assumed to be zero.

Theworst-case response tinoé a task(r) is the longest time ever taken by that task from the tiragiites until thetime

it completests requiredcomputationlf ataskhasa worst-caseesponsdime greaterthanits periodthenthe possibility
existsfor a taskto re-arrive before the previousinvocation has completed.There are two ways of dealingwith this

www.manaraa.com

situation:the previousinvocationis deemedo havea lower priority thanthe new arrival, andthe new arrival pre-empts
the old, or the new arrival is deemedto havea lower priority, andis thereforedelayedfrom executinguntil after the

previousinvocationterminatesWe adoptthe latter approachor severalreasonsthe implementatiorof this approachis

easier sincethe run-time systemdoesnot haveto supportconcurrenthreadsof the sametask.Also, it makeslittle sense
to havea task processingan eventearlierin time delayedby the processingof a later one; a generalrule in real-time
systemss to preservethe orderof events Finally, the worst-caseesponsdime boundsderivedarein generallower than
those found if an earlier invocation is pre-empted.

Sporadicallyperiodictasksareassignedwo periods:theinner period (t) andthe outer period (T). The outerperiodis the
worst-caseanter-arrivaltime betweeribursts’; the inner periodis the worst-caseanter-arrivaltime betweerntaskswithin a
burst. Thereare a boundednumberof arrivalsto eachburst; furthermore,the total time for the burst(i.e. the numberof
inner arrivals multiplied by the inner period) mustlessthanor equalto the outerperiod.A taskthatis not a burstytask
is simply modelled as one that has an inner period equal to the outer period, and at most one ‘inner arrival’.

3. BASIC ANALYSIS AND ARBITRARY DEADLINES

This sectionderivessimple analysisfor the computationaimodel describedabove.We assumehat thereis no release
jitter and that tasks are not sporadically periodic.

Josephand Pandyd 5] derivedsimpleanalysisto find the worst-caseesponsdime of a giventaski, assumingsporadic
taskswith minimuminter-arrivaltimes,andworst-casecomputatiortimes. The analysisassumes critical instant where
all tasksare assumedo be releasedogether;this is the worst-caseschedulingscenariofor simple tasks.The following

analysisgivesthe worst-caseesponsdime of a taski (r;), assuminghatall tasksarereleasedassoonasthey arrive, and
that tasks do not suspend themselves (see Appendix A for a summary of the notation used)

ri:Ci+ T

{r—ﬂcj)
op hpG)| '

As can be see, the response tigppears on both sides of thguation.JoseplandPandyagive a methodfor evaluating
the equation, but a simple approach can be used by iterating to a solution:

_n
rin+l =C + Z |VrT'—“ G
Op hp)| '

Wherer?=C,
Theorem 3.1

If the utilisation of the i highestpriority levelsis lessthan 1, thenthe sequence,” convergedo r; (the task
completion time) in a finite number of stepe(there exists an such that"*1 =r,")

Proof:

See Tindell 16] or Joseph and Pandyg [

The task meets its deadline if and only, is lessthanor equalto D;, the deadlineof taski. If the sequenceonvergego a
value of r; greaterthan T, then the value is invalid, sincethe computationof previousinvocationsof i has not been
accountedor. For systemswith taskdeadlinedessthantaskperiods(i.e. D; < T,) thisis not a problem,sincesucha value

of r, would resultin an unschedulabléaskanyway.However for the arbitrary deadlinesituationthe equationis no longer
sufficient.

www.manaraa.com

Lehoczky[8] describesqualitative analysisto determinethe schedulabilityof a task setwith arbitrary deadlines.The

approacltusesthe notion of ‘busy periods’:a “level i busyperiod” is definedasthe maximumtime for which a processor
executegasksof priority greaterthanor equalto the priority of taski. Lehoczkyshowshow the worst-caseesponsdime

of a taski can be found by examining a number of windows, each defined to be the letigghudyperiodstartingat the

window, and each window starting at an arrival of ta@lence at some multiple ®f before thecurrentinvocationof task

i). A number of windows back in time need to be examined to find the worstesgse¢ime (in general the worst-case
response time can be the response time corresponding to any one of the windows). ifigurates this.

1. >< D
Thlgh Thlgh

«Chigh+

taskhigh | E— R

I

taski <«—T—> [] +C»>
« T _]
T I
+——T—
A A A A A
1st 2nd 3rd 4th 5th

invocations of task i

task low \ \ g

<+——level i busy period——>

Figure 1: a level i busy period over five invocations of task i

Figure 1 showspart of the executionof a three task system:task high is a high priority task (included merely for

illustrating responsetimes of taski), taski is of medium priority (and can arrive before its previousinvocation has
completed), and tadkw is thelowestpriority task(includedto illustratethe lengthof theleveli busyperiod). Time flows

from left to right across the diagram. A task executing for some timiepietedasa shadedectangle The pre-emptiorof

a task is depicted as a white rectangle. The responsefiartaskis thereforethelengthof thewholerectangleThe level

i busy period is illustrated (the busy period ends whsklow is ableto beginexecution).To find the worst-caseesponse
time all five invocationsof taski in this busyperiod mustbe examined(in the diagram,the third invocationof taski is

delayedthe longest,and this responsdime is the worst-caseresponsdime). In the following discussionthe ‘current

invocation’ of task is assumed to be the lase(fifth) invocation.

For a level busy period starting at tingl; before the release of the current invocation of tag&canextendthe original
analysis by finding the computation that starts in this period:

w(a)=(q+DG + 3 {M}cj @

0P hp(i) Tj

The value of w(qg) can again be found by iteration, with w(q)° = (q + 1)C; a faster convergencecan be obtainedby
observing that(q + 1) =2 w(q), and hencey(g)° = w(q — 1) will converge faster, witk(0)° = C.

Notice how all the computationof priority i or higherstartingin the window is accountedor; the term qC accountsfor
the computatiorof previousinvocationsof taski startingin the window. Now, thefirst T, of theleveli busyperiodfalls

www.manaraa.com

beforethe currentinvocationof taski is releasedand hencecannotcontributeto the responsdime. The responsdime
corresponding to the window startind; before the current invocation of tasis therefore given by:

(wi(a) —qT)

Now, asmentionedabove the worst-casgesponsdime canoccurat any oneof theseresponsdimes,andthusthe worst-
case response time is given by:

= max (w (a)-qT) 3

The windowsfor increasingvaluesof q needto be determinedThe sequencas finite, however,becausehe searchcan
stopif aleveli busyperiodis found which finishes beforetaski starts(i.e. the processoiis releasedo processlower
priority tasks)— sincethe processolis executinglower priority tasksthere canbe no impacton taski from previous
invocations of taskin busy periods starting earlier. Thus the above iteration over increasing vatpearo$top if:

wi(a) < (a+1)T,

The aboveanalysisis illustratedby consideringagainfigure 1: the third invocationof taski (i.e. q = 2) finishesat time w,
wherew is equal to Zigh * 3C, (thisis thevalueof wto which equation2 convergesvhenq = 2). Thethird invocationof
taski is releasedat time 2T;, andthereforethe responseime of this invocationis 2C,,, + 3C; — ZT;. After evaluatingthe
responsdimesfor all five invocationsstartingin the busyperiodit canbe seenthat this is the largestresponsdime (i.e.
the worst-case response time).

We cannow seethat the original analysisis a specialcaseof the aboveanalysis:the original equation(Equationl) is
equivalentto equation2 with g = 0. No windows starting earlier needbe consideredsincewe constrainD,, and hence
w(0), to be less than,.

At this pointit is appropriateto discussthe extensionsieededo analysethe priority ceiling protocol. The protocol has
the propertythatany taskcanonly be blockedat mostonceby a lower priority task.In fact, a strongerassertioncanbe
proved:thatduringaleveli busyperiodtherecanbeat mostoneblockingdueto a taskof lower priority thani. This can
be seenby consideringhe operationof the priority ceiling protocol: at any time only onetaskof lower priority thani can
hold a semaphorevith ceiling greater(or equalto) the priority of i. Thusanytaskexecutingin theleveli busyperiodcan
only be blocked at most once. When tlaiskterminateghe processowill continueto executeat a priority greaterthanor
equal to until theendof theleveli busyperiod.No tasklower thanthe priority of i canexecuteglandhencecannotlock a
semaphore). Therefore the levdusy period can be blocked at most once by tasks of lower priority.than

The window denotedw;(g) representshe executionof a level i busy period startingat time gT, beforethe releaseof the
invocationof i we areconsidering The window w(q) includescomputatiorfrom multiple invocationsof taski andhigher
priority tasks. To allow for blocking time we need only add the tBr(equal to the longest criticaectionof a semaphore
of ceiling priority greaterthanor equalto that of taski, wherethe critical sectionis executecby a taskof priority lower
than task). The above analysis leads to the following theorem:
Theorem 3.2

The worst-case response time of a taiskgiven by:

= max (w (@) -qT)

www.manaraa.com

wherew,(q) is given by:

wW()=(q+DG +B + Y {@}C, @
o mpiy| i
Proof:

Follows directly from the derivation of the relations described above

4, THE RELEASE JITTER PROBLEM

So far we have assumed that as soon as a task arrives it is released. In general this is not the case (a task mdy be delayed
the polling of atick schedulerpr perhapsawaitingthe arrival of a message)andthe aboveequationanustbe extendedo
include this release jitter time.

The releasdtter problemoccurswhenthe worst-casdime betweersuccessiveeleasesf a taskis shorterthanthe worst-
case time betwearrivals of a task. Consider the following scenario: a fasi higher priority than task arrivesattime
0. At alatertime J; latertask] is released(perhapg is a sporadicwhich mustbe polled for by a tick scheduler)At the
sametime taski is releasedTaskj immediatelypre-emptdaski, asexpectedAt time T. taskj re-arrives.Thistime j is
immediatelyreleasedperhapg arrived just beforethe tick schedulempolling period). From the view of taski, taskj has
arrivedwith time T-J betweenarrivals (Figure 2). The currentschedulingequationgdo not caterfor this situation,and
hence must be modified.

A
—
v

taskj : :

task i \ \

Figure 2: the problem of release jitter

Over a large numberof periodstask|j will executeat the period T but over a short period of time (betweenjust two
successive invocations pfthis rate isoptimistic. Now, the worst-caseschedulingscenaridor this short-terminter-arrival
‘compression’s asdescribedabove:a task| is releasedat the sametime asthe level i busyperiod.Without releasgitter
the total pre-emptiontime would be aC, (wherea is a positive integer); if releasejitter is accountedfor an extra pre-
emption could occur, giving a total pre-emption of tim&(l)Cj. This occurs if:

aTj <w (q) +J; <(a+DT; and(a-1T; <w;(q) <aT,

i.e.

_ J .
a< W@+ <a+landa-1< wi(Q) <a
T Tj

Lemma
The pre-emption due to higher priority tagks given by:

T |

|7Jj W (ﬂ
Of hp(i) j

www.manaraa.com

Proof:

Follows directly from the definition of release jitter.

PRAN —
D S SN
D | ‘ |
R S

w, (5) starts here

15
[
< level i busy period >
A A A A A A
1st 2nd 3rd 4th 5th 6th

invocations of task i

Figure 3: release jitter and busy periods

We now consider the join effects Bf> T andreleassitter. Taski itself could potentiallysufferreleasgitter (asdescribed
in the previoussection),andthustheleveli busyperiodsfrom previousinvocationsof taski canstartJ; later (Figure 3).
This doesnot affect the computationfrom i startingin w(q) (it remainsat (g + 1)C), but doesaffect the corresponding
responseime: the window wi(q) needdo startJ; laterthanthefirst invocationof i in the busyperiod,andhenceequation
3is updated to:

= _max (w(a)+3 -q¥) ®)

For completeneswe mentionthatthe equationsarestill correctin the casewhenJ, is large (>> TJ.): the equationsgredict
that, in the worst-case, a number of invocationsaaiuld be released simultaneously. This is exaetigt could happenin

the worst-casesupposehat taskj was a packetinterrupt handler(processingpacketsfrom a broadcastus). If a tick

schedulemolled for the releaseof taskj and hada polling period T, >> T (i.e. severalpacketscould arrive between
scheduleticks) thenall outstandingpacketsvould haveto be processedby taskj, taking at mostC, computatiorntime for

eachpacket.Thus a lower priority taski releasedat the sametime would be pre-emptedor a long time, and thus the
equations for release jitter handle the case when the release jitter is large.

www.manaraa.com

5. SPORADICALLY PERIODIC TASKS

This sectiondescribehow the schedulabilityanalysisof the previoussectioncanbe updatedto determineexactly worst-
caseresponsdgimeswhentaskscanbehaveas ‘sporadically periodic’ tasks:executingwith aninner period (t;) and outer
period (T)).

Firstly, we haveto placesomerestrictionson the model: we musthavethe ‘bursty’ behaviourfinishing beforethe next
burst(i.e. nt, < T;). We alsoassumehat the releasditter J; is the inner releasgjitter (i.e. eachinvocationof taski can
suffer this jitter).

Theorem 5.1

The worst-case response time of taskgiven by:

h =q:gjla2f<3___(wi(q)+Ji -mt -MT)

wherem is given by:

m =q-Mn

and wherew,(0) is given by:

wi(q)=(Mn +m +1)G +B + z (min(q 'Fj +W(Q)-FT H+F"nj}q
O hp(i)

15

and F is given by:
e {Jj +wi<q>J
J T
i
Proof:
We adoptthe sameapproacho finding the worst-casaesponsdime asbefore:a numberof windows are examinedand
the responsdime correspondingo eachis determinedThe worst-casaesponsédime is the maximumof theseresponse

times.However,insteadof examiningwindows startingat time J; + qT; beforethe currentreleaseof a taski we haveto
also consider windows starting.at+ gt; before the release of task

www.manaraa.com

4 T >
<+J—»>
]]
+—t—> +—2t——»
,] m=2]
A

window w; ()

We are examining
starts here

this invocation of i
Figure 4: sporadically period tasks; nj=3,9 =5
Firstly we considerthe computationoccurringin the window w,(g) from previousinvocationsof taski. We define two

integersM; andm, whereM, is the number of outer periods previously that the windostarts atandm is the numberof
inner periods (Figurd). M, andm are given by:

m =q-Mn
whereq is an integek 0.

Fromfigure 4 it canbe seenthat the window startsat time mt, + M;T, —J, beforethe currentreleaseof taski. The total
computation from previous invocations of tasitarting in the windowy(q) is given by:

MinCi + mC, (6)

Considernow the computationoccurringin the window w,(g) from higher priority sporadicallyperiodic tasksj. If the
windowwi(q) is larger than a numbef ‘bursts’ of j thenthe computatiorfrom eachburstamountgo nC,. For the partial
‘burst’ startingin w,(g) we cantreatj asa simple periodictask executingwith periodtj over the remainingpart of w(q).
The whole number of ‘bursts’ starting and finishingy(o) is given by:

J; +wi (0)
F"{ | T J

theremainingpart of the window w,(q) is of IengthJj +wi(q) - R T andhencea boundon the numberof invocationsof |
in this remaining time is:

15

{Jj +w (@) -F T, }

Anotherboundon the numberof invocationsin thistime is n, sincea burstcanconsistof at most n, invocationsof task|.
Therefore the least upper bound can be taken:

(FWW.(Q)-F,T,-H
min, nj, .
]

www.manaraa.com

Thus the total computation from all higher priority tagkgcurring in the window(g) is:

J+w(q)-FT
> min(nj,{ ! W'(tq)) JH+anj C 7
O hp(i) j

and hence the theorem is derived.

Note that when evaluating the worst-case response time for attaskeration can stop as soorva®|) < M|T, + mt;, —J,

6. TICK SCHEDULING

Tick schedulingis a commonway of implementinga priority pre-emptivescheduler:a periodic clock interruptruns a

schedulewhich polls for the arrivals of tasks;any arrivedtasksare placedin a notionalpriority orderedrun-queueThe

schedulerthen dispatcheghe highestpriority task on the run-queue Sporadictaskscan arrive at any time, and hence
suffer a worst-case release jittefr T, the periodof thetick schedulerPeriodictasks,in the generalcase canalsoarrive

atanytime. However,a taskwith a periodthatis a multiple of T, anddefinedto arrive at a tick interrupt,hasa release
jitter of zero.Our motivationfor polling for sporadicss a safetyone:if sporadicswerereleaseddyy a processointerrupt

initiated by the arrival condition of the sporadicthen somemechanismmust exist to preventthe interrupt re-occurring
beforethe worst-casee-arrivaltime. If sporadicsare polledthenthe scheduleicandecidenot to releasea sporadicif the

minimum inter-arrival time has been violated.

The overheadslueto operatingtick schedulingcanbe accuratelydeterminedy applyingthe sameschedulinganalysisas
describedin previoussections.Before applying the analysiswe will briefly describesomeimportant characteristicof

certain tickschedulingmplementationsA commonway of implementingtick schedulings to usetwo queuesonequeue
holdsa deadlineorderedlist of taskswhich areawaitingtheir startconditions(suchasa starttime for periodics,or a start
event — such as a value in an 1/O register — for sporadicsjiewetethis queuethe pendingqueue The otherqueueis a

priority-orderedlist of runnabletasks,denotedthe run queue.At eachclock interrupt the schedulerscansthe pending
gueue for tasks which are now runnable and transfers them to the run queue.

Whena runningtaskterminatest executes systemcall (on a 68000-familyprocessothis is calleda ‘trap’) to transfer
thetaskbackto the pendingqueueto awaitthe startconditionfor the nextinvocation(of course for a taskwith deadline
greaterthan periodthe startconditionmay alreadybe true, andthe task can be returnedimmediatelyto the run queue).
The overheadslueto this call canbe allowedfor by treatingthe call asa critical sectionof the calling task,guardedby a
semaphore with a ceiling equal to the highest priority task in the system.

Most implementations of such a queuing system have the following characteristic: the compasitmtakea taskfrom
the pendingqueueto the run queueis lower if more than one task is taken at the sametime. For example,in one
implementatiorof a run-time systemat York [4] the worst-casecostto handlea timer interruptis 66us; the costto take
the first task from the pending queue is anoth@isfdve denote this tin’@QL). For each subsequetaiskremoved(aspart
of the processingvithin the sameinterrupt) the costis 40us (we denotethis time CQS). This is becauseéhereare one-off
costsassociatedvith settingup loops, etc Thesecostsare worst-casecomputationtime costswith the processorcache
disabled. We now develop analysis to accurately account for these overheads.

The costsof the periodictimer interrupt can be modelledas a simple task, with worst-casecomputationtime C_ and
periodT,; within a time window of widtlw the worst-case number of timer interrupts is given by:

T

10

www.manaraa.com

Now, within the samewindow the worst-casenumberof timestasksmove from the pendingqueueto the run queueis
(from equatiory) given by:

Ji+w-TF
K= Z min({#]’nj}+ nj F]
t.
0 tasks J

If, over a window of widthw, the total number daskqueuemoves K, is lessthanthe numberof clock interruptsL, then
in theworst-casall of the queuemanipulationsarefull cost(i.e. eachtakinga worst-casecomputatiorntime of CQL), and
the full cost of tick scheduling overheads is:

LCqy + KCqL

If, overw, K is greaterthanL thenonly thefirst L taskqueuemovesare at the full costCy; the remainingK —L require
only Cos each. Hence the tick scheduling overheads for a s a window of widthw are:

LC; + min(L, K)Cq, + maxK —L, 0)Cqg

7. OPTIMAL PRIORITY ORDERING

As hasbeenmentionedbeforeneitherthe deadlinemonotonicnor rate monotonicpriority orderingpoliciesare optimaP

for taskswith arbitrary deadlines.We reproducehere the optimal priority ordering algorithm of Audsley [1]. The

algorithmworks asfollows: a priority orderingis partitioninto two parts:a sortedpart, consistingof the lower n priority

tasks,andthe remainingunsortedhigherpriority tasks.Initially the priority orderingis an arbitraryone,andall tasksare
unsorted All tasksin the unsortedpartition arechosenin turn andplacedat the top of the sortedpartition and testedfor

schedulability. If the chosen task is schedulable then the priority of the task is left aadttie sortedpartition extended
by one position. If the task is not schedulable it is returnéd former priority. This continuesuntil eitherall tasksin the

unsortedpartition havebeencheckedandfoundto be unschedulablé¢in which casethereis no priority orderingresulting
in a schedulablesystem),or elsethe sortedpartition is extendedo the whole priority map (in which casethe priority

ordering is a feasible one).

An arbitrary priority orderingis choserin anarray,with 0 beingthe highestpriority, andN — 1 the lowest(N denoteghe
number of tasks in the system; the algorithm assinied). The following pseudo-code details the algorithm:

ordered := N

r epeat
finished := fal se
failed := true
j =1
r epeat
insert j at priority ordered
if j is schedul able then
ordered := ordered - 1
failed := fal se
finished := true
el se
insert j back at old priority
end if
j =] +1
until finished or j = ordered

until Ordered = 1 or failed

Zoptimalin the sensethatif the algorithmis unableto find a priority orderingwhereall tasksare schedulabléhenno priority ordering
exists where all tasks are schedulable

11

www.manaraa.com

At all timesthe sortedpartition is schedulablesincethe priority orderingwithin the unsortedpartition cannotaffectthe
sortedtasks.The sortedpartitionincreasesn sizeuntil eitherall the tasksare schedulablepr noneof thetop n tasksare
schedulablet priority n. The analysishasthe propertythat decreasinghe priority of a taskcannotleadto a decreasen
worst-casaesponsdime (i.e. a decreasén priority cannotincreaseschedulability).Therefore,in the casewherenoneof
the top n tasksis schedulablet priority n no priority ordering can exist whereall tasksare schedulableThereforethe
algorithm must be consideredoptimal. Furthermore,this algorithm holds for any schedulingtest where worst-case
response time is monotonic with decreasing priofiy. (vhere decreasing the prioritf a taskdoesnot leadto a decrease

in the worst-case response time of that task).

8. SUMMARY

We reproduce here the equations for the full schedulability test:

The worst-case response time of a taiskgiven by:

1= max (wi(@)+d -m§ -MT)

The iteration over values gfcan stop as soon agq) < M/T, + mt, —J;

M; is given by:

andm is given by:
m =q-Mn
w(q) is given by:

wi(a)=(Mn +m +1)G +B + (mi”(f} 'Fj T i97hY H““anj}q
ST 0) 15

j
+LCq +min(L,K)Cq +maxK -L,0)Cqs

wherew(q) can be found by iteration as for equatigrwvith w,(g)° = w(q — 1), andw,(0)° = 0
F is given by:
3; +wi (q)
N g B
i
K is given by:

K= S minUJj +W'(tq)_Tj f].nj} nF

0 tasks

andL is given by:

12

www.manaraa.com

L= {wi (q)]

Teik
Othersymbolsusedin the aboveequationsaaredefinedin the glossarygivenin AppendixA. The schedulabilityof a taski
can be assessed by comparing with the deadline:

rh<D

i
An optimal priority ordering can be obtained using the algorithm described in the previous section.

9. EXAMPLE TASK SET

The following tables summarise an example task set, based upon the&&Btdescribedy Lockeetal [13]. Thetasks
are listed in priority order, as found by the optimal priority ordering algorithm describedearlier. All times are in
microsecondsTask 11 is a sporadictask, whosearrival is polled for by the tick schedulerand thereforehasnon-zero
releasgitter. All othertasksare strictly periodic, with periodsthat are multiples of T, and hencedo not suffer release
jitter. Tasks lock and unlock semaphores according to the following pattern:

semaphoreg locked | time
by held

2 task9 300
4 task9 300
1 task9 900
2 task15 | 1350
3 task10 | 400
3 task6 400
4 task3 100
5 taskll | 750
5 taskl5 | 750

When the task set is assigned a deadline monotonic priority ordering, the worst-case response times are as follows:

ID T, t n| C B J D, r

taskl 200000 200000 3000 0 0 5000 4180
task2 25000/ 5000 700 0 0 5000 4880
task3 25000/ 5000 1400| 300 0| 12000] 7660
task4 40000 40000 1000| 300 0| 40000] 12740
task5 50000/ 50000 3000| 300 0| 50000] 16140
task6 50000/ 50000 5000| 400 0| 50000/ 21706
task? 59000 59000 8000| 400 0| 59000] 37506
task8 80000 80000 9000| 400 0| 80000| 48306
task9 80000 80000 2000 1350 0| 100000] 78450
task10 | 100000/ 100000 5000 1350 0| 115000| 117708

task1l 200000 200000
task12 200000 200000
task13 200000 200000
task14 200000 200000
task15 200000 200000
task16 | 1000000/ 1000000
task1l7 | 1000000/ 1000000

1000| 1350| 1000| 200000| 142184
3000| 1350 0| 200000| 144382
1000| 1350 0| 200000| 145448
1000| 1350 0| 200000/ 146514
3000 0 0| 200000| 148296

0

0

1000 0 1000000| 149362
1000 0 1000000/ 195330

RiRrRRRIRRPRRPRRRIRPRPRRPRRW|W|~

13

www.manaraa.com

Tasksarelistedin thetablein priority order.As canbe seentask10 missests deadline(the worst-caseesponsdime of
this task is marked in bold type). When Audsley’s optipradrity orderingalgorithmis applied,andthe analysisgivenin
this paper used, the following results are obtained:

ID B r
task2 o[1580
task1 0| 4880

task3 300 7660
task8 300| 21606
task7 300| 34960
task4 300| 38472
task6 400| 45108
task5 400| 48306
task10 300| 96306
task9 1350 99554
taskl7 | 1350| 141184
task16 | 1350| 142250
task15 750 144782
task14 750| 145848
task13 750| 146914
task12 750| 195080
task11l 0| 196330

Again, tasks are listed in the table in priority order.casbe seenthe worst-caseesponsgimesof all tasksarelessthan
the deadlinesandhencethe tasksetis schedulableAppendixB detailshow to obtainthe programthat implementedhe
analysis given in this paper.

10. CONCLUSIONS

This shortpaperhasshownhow the window approachto finding worst-caseesponsdimescangive powerful scheduling
theory tailoredo the behaviourof real real-timesystemsTo usethe window approachall thatneedbe doneis to find the

worst-caseamountof higher priority computationstarting in a given window, and examinea sufficient number of

windows.This approachhasled to schedulabilityanalysisfor complextaskbehavioursuchasmodechangeg7] andtask
offsets[6]; the latter analysishasbeenshownto be a supersebf static priority cyclic scheduling.The overheadslueto

operatingatick driven schedulehavealsobeenaccuratelyaccountedor. The analysisderivedin this paperpermitstasks
to be assigned arbitrary deadlines, suffer release jitter, and behave as sporadically periodic tasks.

11 REFERENCES

[1] Audsley,N. C., “Optimal Priority Assignmentnd Feasibility of Static Priority TasksWith Arbitrary Start
Times; Dept. Computer Science, University of York (December 1991).
[2] Audsley, N., A. Burns, M. Richardson, K. Tindell and A. WellingspplyingNewSchedulingrheoryto Static

Priority Pre-emptiveSchedulindg, ReportRTRG/92/120Departmenbf ComputerScience University of York
(February 1992).

[3] Baker, T. P.}'Stack-Based Scheduling of Realtime Proces&esl Time Systems B((March 1991).

[4] A.D. Hutcheon,” Timings of Run-timeOperationan Modified York Ada,” Task8 Volume C, Deliverableon
ESTEC Contract 9198/90/NL/SF, York Software Engineering Limited, University of York (July 1992).

[5] Joseph, M., P. Pandy&inding Response Times irReal-TimeSysteni, BCS ComputerJournal(Vol. 29, No.
5, Oct 86) pp.390-395.

[6] K. Tindell, “Using Offset Information to Analyse Static Priority Pre-EmptivelyScheduledTask Sets; YCS

182, Dept of Computer Science, University of York (August 1992d).

14

www.manaraa.com

[7] K. W. Tindell, A. BurnsandA. J. Wellings, “Mode Changesn Priority Pre-emptivelyScheduledSystems,
Proceedings 13th IEEE Real-Time Systems Symposium (2-4 December 1992).

[8] Lehoczky, J. P.[Fixed Priority Schedulingof Periodic TaskSetsWith Arbitrary Deadlines;, Proceedingd1th
IEEE Real-Time Systems Symposium (5-7 Decmeber 1990) pp.201-209.
[9] Lehoczky,J., L. ShaandY. Ding, “The Rate Monotonic SchedulingAlgorithm: Exact Characterisationand

Average Case BehaviolRroceedings of the Real-Time Systems Symposium (1989).

[10] Leung, J. Y. T., J. WhiteheatlDn The Complexitgf Fixed-Priority Schedulingof Periodic Real-TimeTasks;
Performance Evaluation (Vol. 2, Part 4, Dec 1982) pp.237-250.

[1Y Liu, C. L., J. W. Layland,“ SchedulingAlgorithmsfor Multiprogrammingin a Hard-Real-TimeEnvironment,
Journal of the ACM 20() (1973) pp.46-61.

[12] Locke, C.D., “Softwarearchitecture for hard real-time applications: cyclic executivesvs. fixed priority
executive$, Real-Time Systems #)((March 1992) pp.37-53. Real-Time Syst. (Netherlands).

[13] Locke,C.D., D. R. VogelandT. J. Mesler,“Building a PredictableAvionicsPlatformin Ada: A CaseStudy;
Proceedings of the 12th Real Time Systems Symposium (December 1991).

[14] Rajkumar, R., L. Sha and J. P. Lehoczky, “Real-Time SynchronizationProtocols for Multiprocessors,
Proceedings of the IEEE Real-Time Systems Symposium (1988) pp.259-269.
[15] Sha, L., R. Rajkumarand J. P. Lehoczky, “Priority Inheritance Protocols: An Approachto Real-Time

Synchronisatiori, IEEE Transactions on Computers @(September 1990) pp.1175-1185.

[16] Tindell, K., “Using Offsetinformationto AnalyseStaticPriority Pre-EmptivelyScheduled askSets; Dept of
Computer Science, University of York (August 1992).

[17] Tindell, K., A. Burnsand A.J. Wellings, “Allocating Real-TimeTasks(An NP-Hard ProblemmadeEasy);
Real-Time Systems 2) (June 1992) pp.145-165.

APPENDIX A — GLOSSARY OF NOTATION

The following table gives the notation used in this paper:

[Taski denotes the task for which we are trying to find the worst-case response time
] Taskj generally denotes a task of higher priority tihan

tasks The set of all tasks in the system

hp(i) The set of all tasks of higher priority than task

G The worst-case computation time of task

D, The static deadline of taskmeasured relative to the arrival time of the task

B, The worst-case blocking time of tasKound according to the priority ceiling protocol

J, The worst-casereleasejitter of taski (i.e. the worst-casedelay betweena task arriving and being
released)

T, The outer period of task

t, The inner period of task

n, The worst-case number of arrivals of tagler outer period

r; The worst-case response time of tgakeasured from the arrival time to the completion time

Caos The worst-case computation time required to move a single task from the delay queue to the run

Cas The worst-case computation time to move each task from the delay queue to the run queue

T The period of the clock timer interrupt

Cou The worst-case computation time required to service the periodic clock timer interrupt

w Generally a computation ‘window’ used to find worst-case response times

15

www.manaraa.com

APPENDIX B — AN ANALYSIS PROGRAM

The sourcecodeto a programthatimplementsthe analysisdescribedn this papercan be obtainedvia anonymoud=TP
from:

m nster.york. ac. uk
(IP addressi44. 32. 128. 41)

in the directory:

pub/real time/ prograns/src/arbdead

16

www.manharaa.com

