
www.manaraa.com

AN EXTENDIBLE APPROACH FOR ANALYSING

FIXED PRIORITY HARD REAL -TIME TASKS

K. W. Tindell1

Department of Computer Science, University of York, England YO1 5DD

ABSTRACT

As the real-time computing industry moves away from static cyclic executive-based scheduling
towards more flexible process-based scheduling, so it is important for current scheduling
analysis techniques to advance and to address more  realistic application areas. This paper
extends the current analysis associated with static priority pre-emptive based scheduling; in
particular it derives analysis for tasks with arbitrary deadlines that may suffer release jitter due
to being dispatched by a tick driven scheduler. We also consider bursty sporadic activities,
where tasks arrive sporadically but then execute periodically for some bounded time. The
paper illustrates how a window-based analysis technique can be used to find the worst-case
response time of a task set, and shows that the technique can be easily extended to cope with
realistic and complex task characteristics.

1. INTRODUCTION

One commonly proposed way of constructing a hard real-time system is to build the system from a number of sporadic
and periodic tasks, each assigned static priorities, and dispatched at run-time according to the static priority pre-emptive
scheduling algorithm. The main thrust of research with this approach has been to derive a priori  analysis that can bound
the behaviour of the tasks at run-time. Original work by Liu and Layland [11] provides a priori  analysis to determine if a
set of periodic tasks would be guaranteed to meet their deadlines. Task deadlines are taken to be at the end of the periods
of the tasks, and tasks are not permitted to block at run-time. Furthermore, each task is assigned a unique priority
monotonically with task period, and hence the name rate monotonic scheduling. The analysis provides a schedulability
test by giving a utilisation bound. The Liu and Layland analysis is sufficient (an essential property of any schedulability
test — if the test passes a set of tasks then those tasks must always meet their deadlines) but not necessary (a measure of
the ‘efficiency’ of the test — if the test is necessary then a rejected task set will be unschedulable in the worst-case); Sha et
al [9] extended the analysis to provide an exact test (i.e. both sufficient and necessary). Sha et al [15] derived a run-time
algorithm to permit tasks to lock and unlock semaphores according to a protocol, termed the priority ceiling protocol.
With this protocol a system is guaranteed to be free of deadlock  (on single processor systems), and a given task can be
blocked at most once by a lower priority task. Sha et al extended the rate monotonic analysis to account for the behaviour
of this protocol, adding a blocking factor to the schedulability equations (the blocking factor accounts for the worst-case
time a given task can be blocked).

The priority pre-emptive dispatching algorithm has also been analysed by Joseph and Pandya [5] to find the worst-case
response time of a given task. Analysis is derived that finds the worst-case time between a task being released (i.e. placed
in a notional priority-ordered run-queue) and the task completing the execution of a worst-case required computation time.
This permits task deadlines to be less than task periods: the worst-case response time can be compared to a static deadline.
The optimal priority ordering for tasks with deadlines less than periods has been shown to be the deadline monotonic
ordering [10]. Allowing task deadlines to be less than task periods is useful for many real-time applications: in distributed
systems deadlines can be shortened to allow time for messages to pass between processors [17]; for control systems input
and output jitter can be controlled [12]. However, some real-time applications are not so stringent, and can accept task
deadlines greater than task periods: a task is permitted to re-arrive before the previous invocation has finished (and is then
delayed until the previous invocation terminates). Lehoczky [8] describes qualitative analysis which can determine the
worst-case response time of a given task with such arbitrary deadlines. Lehoczky points out that neither the rate monotonic
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nor deadline monotonic priority ordering policies are optimal for tasks with arbitrary deadlines. We will reproduce here an
algorithm which finds the optimal priority ordering for any task set.

Many static priority pre-emptive dispatchers are implemented using tick scheduling – a periodic clock interrupt runs the
scheduler; a budget timer ensures that control is returned to the scheduler if a task exceeds its permitted worst-case
execution time. One of the problems with pure tick scheduling is that sporadic task arrivals are polled by the scheduler,
which means that a sporadic task can arrive (i.e. want to run) but be delayed before being released. It is then possible that
this leads to so-called release jitter: variability in the release of a task (by at most the tick period). Periodic tasks which
have a period that is not an integer multiple of the tick period can also in general suffer a release jitter. This release jitter
leads to the possibility of a task appearing to arrive sooner than the worst-case inter-arrival time, and violates the
assumptions of current analysis. Rajkumar [14] extends the exact rate monotonic analysis of Lehoczky et al [9] to permit
tasks to be blocked on an external event (release jitter is a special case of external blocking) in order to permit the priority
ceiling protocol to be extended to distributed systems. However, these extensions result in a non-exact test; we will derive
exact analysis which accounts for release jitter.

Some real-time systems have tasks that behave as so-called sporadically periodic tasks [2]: a task arrives at some time,
executes periodically for a bounded number of periods (called inner periods), and then does not re-arrive for a larger time
(called the outer period). Examples of such tasks are interrupt handlers for bursty interrupts (for example, packet arrivals
from a communications device), or certain  monitoring tasks. Existing analysis is not exact (and hence pessimistic) for
these tasks: tasks would be assumed to execute continuously at their inner period rate. We will derive exact analysis for
tasks with this behaviour.

This paper will derive analysis for static priority pre-emptive systems that permits tasks to have arbitrary deadlines, release
jitter, and behave as sporadically periodic tasks. The derivation of this analysis will illustrate how using a window
approach to finding worst-case response times for these tasks is an appropriate way of obtaining an analysis tailored to the
behaviour of real real-time tasks. This approach is easily extended to deal with other application characteristics.

The paper is structured as follows: Section 2 will describe the computational model assumed throughout this paper, and
define the notation used. Section 3 will derive basic analysis from that of Joseph and Pandya and extend it to permit
arbitrary deadlines, using the approach of Lehoczky. Section 4 will extend the analysis to permit release jitter to be
accounted for. Section 5 will further extend the analysis to be exact for sporadically periodic tasks. Section 6 will also
discuss the implementation of static priority pre-emptive dispatching using timer interrupts (i.e. tick scheduling); the
analysis will be extended to exactly account for the overheads due to this means of scheduling. Section 7 will give an
algorithm to find the optimal priority ordering for a task set. Section 8 will summarise the scheduling theory developed.
Section 9 will present an example task set and determine the worst-case response times of each task in the set. Appendix A
gives a table of notation used in this paper. Appendix B gives details on how a program implementing the analysis
described in this paper can be obtained.

2. COMPUTATIONAL M ODEL AND ASSUMPTIONS

A number of tasks are statically assigned to a single processor. Tasks have unique priorities; the run-time system provides
pre-emptive priority-based dispatching. Each task may lock and unlock semaphores according to the priority ceiling
protocol [15] (or equivalent [3]); although tasks are assigned unique static priorities, they may have their priorities
temporarily increased due to priority inheritance (as part of the operation of the priority ceiling protocol). Tasks can
arrive at any time (i.e. want to run), but can be delayed for a variable but bounded amount of time (termed the release
jitter) before being placed in a notional priority-ordered run-queue (i.e. released). Tasks are given a worst-case inter-
arrival time, termed the period (T): a task cannot re-arrive sooner than this time. For each arrival a task may execute a
bounded amount of computation, termed the worst-case execution time (C). This value is deemed to contain the overheads
due to context switching. The cost of pre-emption, within the model, is thus assumed to be zero.

The worst-case response time of a task (r) is the longest time ever taken by that task from the time it arrives until the time
it completes its required computation. If a task has a worst-case response time greater than its period then the possibility
exists for a task to re-arrive before the previous invocation has completed. There are two ways of dealing with this
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situation: the previous invocation is deemed to have a lower priority than the new arrival, and the new arrival pre-empts
the old, or the new arrival is deemed to have a lower priority, and is therefore delayed from executing until after the
previous invocation terminates. We adopt the latter approach for several reasons: the implementation of this approach is
easier, since the run-time system does not have to support concurrent threads of the same task. Also, it makes little sense
to have a task processing an event earlier in time delayed by the processing of a later one; a general rule in real-time
systems is to preserve the order of events. Finally, the worst-case response time bounds derived are in general lower than
those found if an earlier invocation is pre-empted.

Sporadically periodic tasks are assigned two periods: the inner period (t) and the outer period (T). The outer period is the
worst-case inter-arrival time between ‘bursts’; the inner period is the worst-case inter-arrival time between tasks within a
burst. There are a bounded number of arrivals to each burst; furthermore, the total time for the burst (i.e. the number of
inner arrivals multiplied by the inner period) must be less than or equal to the outer period. A task that is not a bursty task
is simply modelled as one that has an inner period equal to the outer period, and at most one ‘inner arrival’.

3. BASIC ANALYSIS AND ARBITRARY DEADLINES

This section derives simple analysis for the computational model described above. We assume that there is no release
jitter and that tasks are not sporadically periodic.

Joseph and Pandya [5] derived simple analysis to find the worst-case response time of a given task i, assuming sporadic
tasks with minimum inter-arrival times, and worst-case computation times. The analysis assumes a critical instant, where
all tasks are assumed to be released together; this is the worst-case scheduling scenario for simple tasks. The following
analysis gives the worst-case response time of a task i (r i), assuming that all tasks are released as soon as they arrive, and
that tasks do not suspend themselves (see Appendix A for a summary of the notation used):
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As can be see, the response time r i appears on both sides of the equation. Joseph and Pandya give a method for evaluating
the equation, but a simple approach can be used by iterating to a solution:
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Theorem 3.1

If the utilisation of the i highest priority levels is less than 1, then the sequence r i
n converges to r i (the task

completion time) in a finite number of steps (i.e. there exists an n such that r i
n+1 = r i

n)

Proof:

See Tindell [16] or Joseph and Pandya [5]

The task meets its deadline if and only if r i is less than or equal to Di, the deadline of task i. If the sequence converges to a
value of r i greater than Ti then the value is invalid, since the computation of previous invocations of i has not been
accounted for. For systems with task deadlines less than task periods (i.e. Di ≤ Ti) this is not a problem, since such a value
of r i would result in an unschedulable task anyway. However, for the arbitrary deadline situation the equation is no longer
sufficient.
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Lehoczky [8] describes qualitative analysis to determine the schedulability of a task set with arbitrary deadlines. The
approach uses the notion of ‘busy periods’: a “level i busy period” is defined as the maximum time for which a processor
executes tasks of priority greater than or equal to the priority of task i. Lehoczky shows how the worst-case response time
of a task i can be found by examining a number of windows, each defined to be the length of the busy period starting at the
window, and each window starting at an arrival of task i (hence at some multiple of Ti before the current invocation of task
i). A number of windows back in time need to be examined to find the worst-case response time (in general, the worst-case
response time can be the response time corresponding to any one of the windows). Figure 1 illustrates this.

Thigh

Chigh

Ti

Ti

Ti

Thigh

Ti

ri

Ci

level i busy period

task high

task low

task i

1st 2nd 3rd 4th 5th

invocations of task i

Figure 1: a level i busy period over five invocations of task i

Figure 1 shows part of the execution of a three task system: task high is a high priority task (included merely for
illustrating response times of task i), task i is of medium priority (and can arrive before its previous invocation has
completed), and task low is the lowest priority task (included to illustrate the length of the level i busy period). Time flows
from left to right across the diagram. A task executing for some time is depicted as a shaded rectangle. The pre-emption of
a task is depicted as a white rectangle. The response time of a task is therefore the length of the whole rectangle. The level
i busy period is illustrated (the busy period ends when task low is able to begin execution). To find the worst-case response
time all five invocations of task i in this busy period must be examined (in the diagram, the third invocation of task i is
delayed the longest, and this response time is the worst-case response time). In the following discussion the ‘current
invocation’ of task i is assumed to be the last (i.e. fifth) invocation.

For a level i busy period starting at time qTi before the release of the current invocation of task i we can extend the original
analysis by finding the computation that starts in this period:
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The value of wi(q) can again be found by iteration, with wi(q)0 = (q + 1)Ci; a faster convergence can be obtained by
observing that wi(q + 1) ≥ wi(q), and hence wi(q)0 = wi(q – 1) will converge faster, with wi(0)0 = Ci.

Notice how all the computation of priority i or higher starting in the window is accounted for; the term qCi accounts for
the computation of previous invocations of task i starting in the window. Now, the first qTi of the level i busy period falls
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before the current invocation of task i is released, and hence cannot contribute to the response time. The response time
corresponding to the window starting qTi before the current invocation of task i is therefore given by:

(wi(q) – qTi)

Now, as mentioned above, the worst-case response time can occur at any one of these response times, and thus the worst-
case response time is given by:

r w q qTi
q

i i= −
=
max ( )

, , ,...0 1 2
b g (3)

The windows for increasing values of q need to be determined. The sequence is finite, however, because the search can
stop if a level i busy period is found which finishes before task i starts (i.e. the processor is released to process lower
priority tasks) — since the processor is executing lower priority tasks there can be no impact on task i from previous
invocations of task i in busy periods starting earlier. Thus the above iteration over increasing values of q can stop if:

wi(q) ≤ (q+1)Ti

The above analysis is illustrated by considering again figure 1: the third invocation of task i (i.e. q = 2) finishes at time w,
where w is equal to 2Chigh + 3Ci (this is the value of w to which equation 2 converges when q = 2). The third invocation of
task i is released at time 2Ti, and therefore the response time of this invocation is 2Chigh + 3Ci – 2Ti. After evaluating the
response times for all five invocations starting in the busy period it can be seen that this is the largest response time (i.e.
the worst-case response time).

We can now see that the original analysis is a special case of the above analysis: the original equation (Equation 1) is
equivalent to equation 2 with q = 0. No windows starting earlier need be considered, since we constrain Di, and hence
wi(0), to be less than Ti.

At this point it is appropriate to discuss the extensions needed to analyse the priority ceiling protocol. The protocol has
the property that any task can only be blocked at most once by a lower priority task. In fact, a stronger assertion can be
proved: that during a level i busy period there can be at most one blocking due to a task of lower priority than i. This can
be seen by considering the operation of the priority ceiling protocol: at any time only one task of lower priority than i can
hold a semaphore with ceiling greater (or equal to) the priority of i. Thus any task executing in the level i busy period can
only be blocked at most once. When this task terminates the processor will continue to execute at a priority greater than or
equal to i until the end of the level i busy period. No task lower than the priority of i can execute (and hence cannot lock a
semaphore). Therefore the level i busy period can be blocked at most once by tasks of lower priority than i.

The window denoted wi(q) represents the execution of a level i busy period starting at time qTi before the release of the
invocation of i we are considering. The window wi(q) includes computation from multiple invocations of task i and higher
priority tasks. To allow for blocking time we need only add the term Bi (equal to the longest critical section of a semaphore
of ceiling priority greater than or equal to that of task i, where the critical section is executed by a task of priority lower
than task i). The above analysis leads to the following theorem:

Theorem 3.2

The worst-case response time of a task i is given by:

r w q qTi
q
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where wi(q) is given by:
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Proof:

Follows directly from the derivation of the relations described above

4. THE RELEASE JITTER PROBLEM

So far we have assumed that as soon as a task arrives it is released. In general this is not the case (a task may be delayed by
the polling of a tick scheduler, or perhaps awaiting the arrival of a message), and the above equations must be extended to
include this release jitter time.

The release jitter problem occurs when the worst-case time between successive releases of a task is shorter than the worst-
case time between arrivals of a task. Consider the following scenario: a task j, of higher priority than task i, arrives at time
0. At a later time Jj later task j is released (perhaps j is a sporadic which must be polled for by a tick scheduler). At the
same time task i is released. Task j immediately pre-empts task i, as expected. At time Tj task j re-arrives. This time j is
immediately released (perhaps j arrived just before the tick scheduler polling period). From the view of task i, task j has
arrived with time Tj – Jj between arrivals (Figure 2). The current scheduling equations do not cater for this situation, and
hence must be modified.

Tj

Ji

ri

task j

task i

Figure 2: the problem of release jitter

Over a large number of periods task j will execute at the period Tj, but over a short period of time (between just two
successive invocations of j) this rate is optimistic. Now, the worst-case scheduling scenario for this short-term inter-arrival
‘compression’ is as described above: a task j is released at the same time as the level i busy period. Without release jitter
the total pre-emption time would be aCi (where a is a positive integer); if release jitter is accounted for an extra pre-
emption could occur, giving a total pre-emption of time (a + 1)Cj. This occurs if:
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Lemma
The pre-emption due to higher priority tasks j is given by:
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Proof:

Follows directly from the definition of release jitter.
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wi (5) starts here
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invocations of task i

Figure 3: release jitter and busy periods

We now consider the join effects of D > T and release jitter. Task i itself could potentially suffer release jitter (as described
in the previous section), and thus the level i busy periods from previous invocations of task i can start Ji later (Figure 3).
This does not affect the computation from i starting in wi(q) (it remains at (q + 1)Ci), but does affect the corresponding
response time: the window wi(q) needs to start Ji later than the first invocation of i in the busy period, and hence equation
3 is updated to:

r w q J qTi
q

i i i= + −
=
max ( )
, , , ,...0 1 2 3

b g (5)

For completeness we mention that the equations are still correct in the case when Ji is large (>> Tj): the equations predict
that, in the worst-case, a number of invocations of j could be released simultaneously. This is exactly what could happen in
the worst-case: suppose that task j was a packet interrupt handler (processing packets from a broadcast bus). If a tick
scheduler polled for the release of task j and had a polling period Ttick >> Tj (i.e. several packets could arrive between
scheduler ticks) then all outstanding packets would have to be processed by task j, taking at most Cj computation time for
each packet. Thus a lower priority task i released at the same time would be pre-empted for a long time, and thus the
equations for release jitter handle the case when the release jitter is large.
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5. SPORADICALLY PERIODIC TASKS

This section describes how the schedulability analysis of the previous section can be updated to determine exactly worst-
case response times when tasks can behave as ‘sporadically periodic’ tasks: executing with an inner period (ti) and outer
period (Ti).

Firstly, we have to place some restrictions on the model: we must have the ‘bursty’ behaviour finishing before the next
burst (i.e. niti ≤ Ti). We also assume that the release jitter Ji is the inner release jitter (i.e. each invocation of task i can
suffer this jitter).

Theorem 5.1

The worst-case response time of task i is given by:

r w q J m t M Ti
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, , , ,...0 1 2 3

b g
where mi is given by:

m q M ni i i= −

and

M
q

ni
i

=
MNM PQP

and where wi(q) is given by:

w q M n m C B n
J w q F T

t
F n Ci i i i i i j

j i j j

j
j j j

j hp i

( ) min ,
( )

( )

= + + + +
+ −L

MMM
O
PPP

F
HG

I
KJ +

F
HGG

I
KJJ∀ ∈

∑1b g
and Fj is given by:

F
J w q

Tj
j i

j

=
+M

NMM
P
QPP

( )

Proof:

We adopt the same approach to finding the worst-case response time as before: a number of windows are examined and
the response time corresponding to each is determined. The worst-case response time is the maximum of these response
times. However, instead of examining windows starting at time Ji + qTi before the current release of a task i we have to
also consider windows starting at Ji + qti before the release of task i.
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M=1
Ti

Ji

ti 2ti
m=2

We are examining
this invocation of i

window wi (q)
starts here

Figure 4: sporadically period tasks; ni = 3, q = 5

Firstly we consider the computation occurring in the window wi(q) from previous invocations of task i. We define two
integers Mi and mi, where Mi is the number of outer periods previously that the window w starts at, and mi is the number of
inner periods (Figure 4). Mi and mi are given by:

M
q

ni
i

=
MNM PQP

m q M ni i i= −

where q is an integer ≥ 0.

From figure 4 it can be seen that the window starts at time miti + MiTi – Ji before the current release of task i. The total
computation from previous invocations of task i starting in the window wi(q) is given by:

MiniCi + miCi (6)

Consider now the computation occurring in the window wi(q) from higher priority sporadically periodic tasks j. If the
window wi(q) is larger than a number of ‘bursts’ of j then the computation from each burst amounts to njCj. For the partial
‘burst’ starting in wi(q) we can treat j as a simple periodic task executing with period tj over the remaining part of wi(q).
The whole number of ‘bursts’ starting and finishing in wi(q) is given by:
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the remaining part of the window wi(q) is of length Jj + wi(q) – FjTj, and hence a bound on the number of invocations of j
in this remaining time is:
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Another bound on the number of invocations in this time is nj, since a burst can consist of at most nj invocations of task j.
Therefore the least upper bound can be taken:
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Thus the total computation from all higher priority tasks j occurring in the window wi(q) is:
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and hence the theorem is derived.

Note that when evaluating the worst-case response time for a task i the iteration can stop as soon as wi(q) ≤ MiTi + miti – Ji

6. TICK SCHEDULING

Tick scheduling is a common way of implementing a priority pre-emptive scheduler: a periodic clock interrupt runs a
scheduler which polls for the arrivals of tasks; any arrived tasks are placed in a notional priority ordered run-queue. The
scheduler then dispatches the highest priority task on the run-queue. Sporadic tasks can arrive at any time, and hence
suffer a worst-case release jitter of Tclk, the period of the tick scheduler. Periodic tasks, in the general case, can also arrive
at any time. However, a task with a period that is a multiple of Tclk, and defined to arrive at a tick interrupt, has a release
jitter of zero. Our motivation for polling for sporadics is a safety one: if sporadics were released by a processor interrupt
initiated by the arrival condition of the sporadic then some mechanism must exist to prevent the interrupt re-occurring
before the worst-case re-arrival time. If sporadics are polled then the scheduler can decide not to release a sporadic if the
minimum inter-arrival time has been violated.

The overheads due to operating tick scheduling can be accurately determined by applying the same scheduling analysis as
described in previous sections. Before applying the analysis we will briefly describe some important characteristics of
certain tick scheduling implementations. A common way of implementing tick scheduling is to use two queues: one queue
holds a deadline ordered list of tasks which are awaiting their start conditions (such as a start time for periodics, or a start
event — such as a value in an I/O register — for sporadics); we denote this queue the pending queue. The other queue is a
priority-ordered list of runnable tasks, denoted the run queue. At each clock interrupt the scheduler scans the pending
queue for tasks which are now runnable and transfers them to the run queue.

When a running task terminates it executes a system call (on a 68000-family processor this is called a ‘trap’) to transfer
the task back to the pending queue to await the start condition for the next invocation (of course, for a task with deadline
greater than period the start condition may already be true, and the task can be returned immediately to the run queue).
The overheads due to this call can be allowed for by treating the call as a critical section of the calling task, guarded by a
semaphore with a ceiling equal to the highest priority task in the system.

Most implementations of such a queuing system have the following characteristic: the computation cost to take a task from
the pending queue to the run queue is lower if more than one task is taken at the same time. For example, in one
implementation of a run-time system at York [4] the worst-case cost to handle a timer interrupt is 66µs; the cost to take
the first task from the pending queue is another 74µs (we denote this time CQL). For each subsequent task removed (as part
of the processing within the same interrupt) the cost is 40µs (we denote this time CQS). This is because there are one-off
costs associated with setting up loops, etc. These costs are worst-case computation time costs with the processor cache
disabled. We now develop analysis to accurately account for these overheads.

The costs of the periodic timer interrupt can be modelled as a simple task, with worst-case computation time Cclkand
period Tclk; within a time window of width w the worst-case number of timer interrupts is given by:

L
w

Tclk

=
LMM OPP
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Now, within the same window the worst-case number of times tasks move from the pending queue to the run queue is
(from equation 7) given by:
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If, over a window of width w, the total number of task queue moves, K, is less than the number of clock interrupts L, then
in the worst-case all of the queue manipulations are full cost (i.e. each taking a worst-case computation time of CQL), and
the full cost of tick scheduling overheads is:

LCclk + KCQL

If, over w, K is greater than L then only the first L task queue moves are at the full cost CQL; the remaining K – L require
only CQS each. Hence the tick scheduling overheads for a task i over a window of width w are:

LCclk + min(L, K)CQL + max(K – L, 0)CQS

7. OPTIMAL PRIORITY ORDERING

As has been mentioned before neither the deadline monotonic nor rate monotonic priority ordering policies are optimal2

for tasks with arbitrary deadlines. We reproduce here the optimal priority ordering algorithm of Audsley [1]. The
algorithm works as follows: a priority ordering is partition into two parts: a sorted part, consisting of the lower n priority
tasks, and the remaining unsorted higher priority tasks. Initially the priority ordering is an arbitrary one, and all tasks are
unsorted. All tasks in the unsorted partition are chosen in turn and placed at the top of the sorted partition and tested for
schedulability. If the chosen task is schedulable then the priority of the task is left as it is, and the sorted partition extended
by one position. If the task is not schedulable it is returned to its former priority. This continues until either all tasks in the
unsorted partition have been checked and found to be unschedulable (in which case there is no priority ordering resulting
in a schedulable system), or else the sorted partition is extended to the whole priority map (in which case the priority
ordering is a feasible one).

An arbitrary priority ordering is chosen in an array, with 0 being the highest priority, and N – 1 the lowest (N denotes the
number of tasks in the system; the algorithm assumes N > 1). The following pseudo-code details the algorithm:

ordered := N
repeat
   finished := false
   failed := true
   j := 1
   repeat
       insert j at priority ordered
       if j is schedulable then
           ordered := ordered - 1
           failed := false
           finished := true
       else
           insert j back at old priority
       end if
       j := j + 1
   until finished or j = ordered
until Ordered = 1 or failed

                                                       
2optimal in the sense that if the algorithm is unable to find a priority ordering where all tasks are schedulable then no priority ordering
exists where all tasks are schedulable

11
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At all times the sorted partition is schedulable, since the priority ordering within the unsorted partition cannot affect the
sorted tasks. The sorted partition increases in size until either all the tasks are schedulable, or none of the top n tasks are
schedulable at priority n. The analysis has the property that decreasing the priority of a task cannot lead to a decrease in
worst-case response time (i.e. a decrease in priority cannot increase schedulability). Therefore, in the case where none of
the top n tasks is schedulable at priority n no priority ordering can exist where all tasks are schedulable. Therefore the
algorithm must be considered optimal. Furthermore, this algorithm holds for any scheduling test where worst-case
response time is monotonic with decreasing priority (i.e. where decreasing the priority of a task does not lead to a decrease
in the worst-case response time of that task).

8. SUMMARY

We reproduce here the equations for the full schedulability test:

The worst-case response time of a task i is given by:

r w q J m t M Ti
q

i i i i i i= + − −
=
max ( )
, , , ,...0 1 2 3

b g
The iteration over values of q can stop as soon as wi(q) ≤ MiTi + miti – Ji

Mi is given by:

M
q

ni
i

=
MNM PQP

and mi is given by:

m q M ni i i= −

wi(q) is given by:
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J w q F T
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LC L K C K L C

i i i i i i j
j i j j
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j j j

j hp i

clk QL QS
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( )

min , max( , )

( )

= + + + +
+ −L
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F
HGG

I
KJJ

+ + + −

∀ ∈
∑1

0

b g
a f

where wi(q) can be found by iteration as for equation 1, with wi(q)0 = wi(q – 1), and wi(0)0 = 0

Fj is given by:

F
J w q

Tj
j i

j

=
+M

NMM
P
QPP

( )

K is given by:

K
J w q T F

t
n n Fj i j j

j
j j j
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=
+ −L

MMM
O
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F
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I
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∑ min

( )
,

and L is given by:
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L
w q

T
i

clk

=
LMM OPP( )

Other symbols used in the above equations are defined in the glossary given in Appendix A. The schedulability of a task i
can be assessed by comparing with the deadline:

r i ≤ Di

An optimal priority ordering can be obtained using the algorithm described in the previous section.

9. EXAMPLE TASK SET

The following tables summarise an example task set, based upon the GAP task set described by Locke et al [13]. The tasks
are listed in priority order, as found by the optimal priority ordering algorithm described earlier. All times are in
microseconds. Task 11 is a sporadic task, whose arrival is polled for by the tick scheduler, and therefore has non-zero
release jitter. All other tasks are strictly periodic, with periods that are multiples of Tclk, and hence do not suffer release
jitter. Tasks lock and unlock semaphores according to the following pattern:

semaphore locked
by

time
held

2 task9 300
4 task9 300
1 task9 900
2 task15 1350
3 task10 400
3 task6 400
4 task3 100
5 task11 750
5 task15 750

When the task set is assigned a deadline monotonic priority ordering, the worst-case response times are as follows:

ID Ti ti ni Ci Bi Ji Di r i

task1 200000 200000 1 3000 0 0 5000 4180
task2 25000 5000 3 700 0 0 5000 4880
task3 25000 5000 3 1400 300 0 12000 7660
task4 40000 40000 1 1000 300 0 40000 12740
task5 50000 50000 1 3000 300 0 50000 16140
task6 50000 50000 1 5000 400 0 50000 21706
task7 59000 59000 1 8000 400 0 59000 37506
task8 80000 80000 1 9000 400 0 80000 48306
task9 80000 80000 1 2000 1350 0 100000 78450
task10 100000 100000 1 5000 1350 0 115000 117708
task11 200000 200000 1 1000 1350 1000 200000 142184
task12 200000 200000 1 3000 1350 0 200000 144382
task13 200000 200000 1 1000 1350 0 200000 145448
task14 200000 200000 1 1000 1350 0 200000 146514
task15 200000 200000 1 3000 0 0 200000 148296
task16 1000000 1000000 1 1000 0 0 1000000 149362
task17 1000000 1000000 1 1000 0 0 1000000 195330
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Tasks are listed in the table in priority order. As can be seen, task 10 misses its deadline (the worst-case response time of
this task is marked in bold type). When Audsley’s optimal priority ordering algorithm is applied, and the analysis given in
this paper used, the following results are obtained:

ID Bi r i

task2 0 1580
task1 0 4880
task3 300 7660
task8 300 21606
task7 300 34960
task4 300 38472
task6 400 45108
task5 400 48306
task10 300 96306
task9 1350 99554
task17 1350 141184
task16 1350 142250
task15 750 144782
task14 750 145848
task13 750 146914
task12 750 195080
task11 0 196330

Again, tasks are listed in the table in priority order. As can be seen, the worst-case response times of all tasks are less than
the deadlines, and hence the task set is schedulable. Appendix B details how to obtain the program that implemented the
analysis given in this paper.

10. CONCLUSIONS

This short paper has shown how the window approach to finding worst-case response times can give powerful scheduling
theory tailored to the behaviour of real real-time systems. To use the window approach, all that need be done is to find the
worst-case amount of higher priority computation starting in a given window, and examine a sufficient number of
windows. This approach has led to schedulability analysis for complex task behaviour, such as mode changes [7] and task
offsets [6]; the latter analysis has been shown to be a superset of static priority cyclic scheduling. The overheads due to
operating a tick driven scheduler have also been accurately accounted for. The analysis derived in this paper permits tasks
to be assigned arbitrary deadlines, suffer release jitter, and behave as sporadically periodic tasks.
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APPENDIX A — GLOSSARY OF NOTATION

The following table gives the notation used in this paper:

i Task i denotes the task for which we are trying to find the worst-case response time
j Task j generally denotes a task of higher priority than i
tasks The set of all tasks in the system
hp(i) The set of all tasks of higher priority than task i
Ci The worst-case computation time of task i
Di The static deadline of task i, measured relative to the arrival time of the task
Bi The worst-case blocking time of task i, found according to the priority ceiling protocol
Ji The worst-case release jitter of task i (i.e. the worst-case delay between a task arriving and being

released)
Ti The outer period of task i
ti The inner period of task i
ni The worst-case number of arrivals of task i per outer period
r i The worst-case response time of task i, measured from the arrival time to the completion time
CQL The worst-case computation time required to move a single task from the delay queue to the run queue
CQS The worst-case computation time to move each task from the delay queue to the run queue
Tclk The period of the clock timer interrupt
Cclk The worst-case computation time required to service the periodic clock timer interrupt
w Generally a computation ‘window’ used to find worst-case response times
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APPENDIX B — AN ANALYSIS PROGRAM

The source code to a program that implements the analysis described in this paper can be obtained via anonymous FTP
from:

minster.york.ac.uk
(IP address: 144.32.128.41)

in the directory:

pub/realtime/programs/src/arbdead
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